

Decadal Wave Variability in the eastern North Atlantic associated with the NAO

Harrif Santo Paul Taylor Richard Gibson

Motivation

Published observations show North Atlantic was getting rougher over 1960s – 1990s.

- due to climate change?

Ref: Carter, D., and L. Draper (1988), Has the north-east Atlantic become rougher?, Nature, 332, 494.

Questions

- Is there an average wave climate at a particular location?
- Are the waves over the last 25 50 years a reliable guide to the next 25 or 100 years?
- The available wave records are too short, is there a way to infer a longer time history for wave climate back to the past (over 400 years)?

NAO and other two modes

Ref: Moore, G., I. Renfrew, and R. S. Pickart (2013), Multidecadal mobility of the North Atlantic Oscillation, Journal of Climate, 26(8), 2453–2466.

Map of the locations

- Hindcast data: NORA10 for all from 1958 2011 (54 years)
- All data contain H_{s} , T_{p} , and T_{m} sampled every 3 hours.
- Data also contain wave direction, wind speed and wind direction, and a split of total waves into swells and wind waves.
- Analysis is presented on total waves.

Model/buoy comparisons

• Shown here for Haltenbanken

Wave power estimate

- $P = \frac{\rho g^2}{64\pi} H_S^2 T_p$
- Note the use of T_p rather than T_e ($T_p \sim 1.2T_e$).
- Winter weather is worst, summer rather benign.
- We look at total average power year by year (with year running from summer to summer, avoid splitting winters).
- In the near future, seasonal variation can be included for monthly wave power variability.

- Predictor model based on linear regression using climate indices.
- Indices obtained from Climate Prediction Center (NOAA, available from 1950 onwards).
- Model is trained over the period of hindcast data by minimising the variance.

$$f = \frac{1}{\sum (P(t) - \overline{P})^2} \times \sum \left[(P(t) - \overline{P}) - \tilde{b}(\mathsf{EA}_{hi}(t) - \overline{\mathsf{EA}}) - \tilde{c}(\mathsf{NAO}(t) - \overline{\mathsf{NAO}}) - \tilde{d}(\mathsf{SCA}_{hi}(t) - \overline{\mathsf{SCA}}) \right]^2$$

$$P_{\text{predictor}} = \overline{P} \times [1 + b(\text{EA}_{\text{hi}}(t) - \overline{\text{EA}}) + c(\text{NAO}(t) - \overline{\text{NAO}}) + d(\text{SCA}_{\text{hi}}(t) - \overline{\text{SCA}})]$$

70°

70°

70°1

Angular partitioning at Forties

Nonlinear predictor model for better correlation for locations in North Sea.

Proxy index based on pressure fields for reconstruction prior to 1950

• Using reconstructed winter pressure fields from Luterbacher (2002).

Ref: Luterbacher, J., E. Xoplaki, D. Dietrich, R. Rickli, J. Jacobeit, C. Beck, D. Gyalistras, C. Schmutz, and H. Wanner (2002), Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500, Climate Dynamics, 18 (7), 545–561.

Reconstructed ocean wave power at Orkney

The M4 wave power machine – Prof. Peter Stansby

- The University of Manchester
- Three-float system separated by half a wave length.
- Broadband frequency response in irregular waves.

Reconstructed practical wave power extracted by the M4 machine at Orkney

Estimating 100-year storm severity

- Via the most probably maximum individual wave height in a storm, H_{mp} (see Tromans and Vanderschuren 1995).
- Peaks-over-threshold, threshold value = 1000 largest storms for 54 years of data, which corresponds to about 20 storms per winter, roughly 1-2 per week.
- Maximum likelihood method as estimator for exponential-type tail.
- Five-year sliding window analysis to obtain temporal variability of H_{mp} .

Ref: Tromans and Vanderschuren (1995), Response based design method in the North Sea: Application of a new method, in Offshore Technology Conference, OTC 7683, Houston.

Correlation with the teleconnections

• Same predictor model as the mean wave climate correlation, except all NAO, EA and SCA indices are low pass filtered (moving average) of 5 years.

Five-year sliding window:

Reconstruction of extreme and mean wave climate

Reconstruction of extreme and mean wave climate

For North Sea locations: variations of mean and extreme wave climate are different.

In conclusion:

- Is there an average wave climate at a particular location?
 Yes, but the average has to be over several decades as there is a lot of decadal variability (in general).
- Are the waves over the last 25 50 years a reliable guide to the next 25 or 100 years?
 Maybe? Depending on what the NAO is doing.
- The available wave records are too short, is there a way to infer a longer time history for wave climate back to the past (over 400 years)?
 Yes, by establishing a strong link with the NAO.

Acknowledgement

We thank BP Sunbury for providing the wave data and acknowledge support from UK EPSRC through project SMARTY.

For more information:

- Santo, H., Taylor, P. H., Woollings, T., & Poulson, S. (2015). Decadal wave power variability in the North-East Atlantic and North Sea. *Geophysical Research Letters*, 42(12), 4956-4963.
- Santo, H., Taylor, P. H., Woollings, T., & Gibson, R. (2015). Decadal variability of extreme wave height as a measure of storm severity in the North-East Atlantic and North Sea. *Geophysical Research Letters* (submitted).
- Santo, H., Taylor, P. H., Eatock Taylor, R. and Stansby, P. (2015). Decadal Variability of Wave Power Production in the North-East Atlantic and North Sea for the M4 Machine. *Renewable Energy (submitted)*.